Wielu uczniów i nauczycieli nie lubi zadań dowodowych i uważa je za trudne. Jednak wystarczy zauważyć, że twierdzenie jest stwierdzeniem faktu, a dowód wyjaśnieniem, dlaczego to twierdzenie jest prawdziwe. Rozwiązując dowolne zadanie rachunkowe, wielokrotnie dowodzimy prawdziwość drobnych faktów, nawet tego nie zauważając. Dowód to każde uzasadnienie dlaczego coś jest prawdziwe.
\nW tym zbiorze zajmiemy się takimi twierdzeniami, których dowody wymagają tylko dwóch kroków. Zazwyczaj jeden z tych kroków wykorzystuje podane założenia, drugi posiadaną wiedzę matematyczną.
\nWiele twierdzeń ma taką formę:
\nTwierdzenie 1. Jeśli zdanie A jest prawdziwe, to zdanie B też jest prawdziwe.
\nDowód takiego twierdzenia (implikacji) to wyjaśnienie, dlaczego zdanie B musi być prawdziwe, jeśli zdanie A jest prawdziwe. Dowód wprost zaczyna się od założenia, że zdanie A jest prawdziwe (w końcu piszemy jeśli A jest prawdziwe i to jest nasze założenie). Zresztą, jeśli zdanie A jest fałszywe, to nie mamy się czym martwić. A raczej w takiej sytuacji nie musimy nic robić, bo to nie ma znaczenia. A więc, przypuszczamy, że zdanie A jest prawdziwe i zapisujemy to w dowodzie jako pierwszy krok. To jest informacja, której możemy użyć w dalszych działaniach. Dalej postępujemy logicznie, krok po kroku, aż dojdziemy do stwierdzenia, że zdanie B jest prawdziwe.
\nWażne jest, aby takie działania zapisywać w języku polskim. Są wprawdzie znaki matematyczne, którymi można zapisać część rozumowania, ale dla czytelności takiego zapisu nie należy moim zdaniem zastąpić całkowicie języka polskiego w zapisie.
\nKoniec rozumowania zapisujemy słowami koniec dowodu lub innym oznaczeniem (cbdu co było do udowodnienia, cnd czego należało dowieść, qed = quod erat demonstrandum lub znak końca dowodu ? nazywany czasem halmosem).
\n ukryj opis- Wydawnictwo: OE Pazdro
- Kod:
- Rok wydania: 2022
- Język: Polski
- Oprawa: Broszurowa/paperback
- Liczba stron: 64
Recenzja